Monday, January 16, 2017

Nuclear Safety Culture and the Shrinking U.S. Nuclear Plant Population

In the last few years, nuclear plant owners have shut down or scheduled for shutdown 17 units totaling over 14,000 MW.  Over half of these units had (or have) nuclear safety culture (NSC) issues sufficiently noteworthy to warrant mention here on Safetymatters.  We are not saying that NSC issues alone have led to the permanent shutdown of any plant, but such issues often accompany poor decision-making that can hasten a plant’s demise.  Following is a roll call of the deceased or endangered plants.

Plants with NSC issues

NSC issues provide windows into organizational behavior; the sizes of issues range from isolated problems to systemic weaknesses.


This one doesn’t exactly belong on the list.  Entergy scheduled it for shutdown in Jan. 2017 but instead it will likely be purchased by a white knight, Exelon, in a transaction brokered by the governor of New York.  With respect to NSC, in 2012 FitzPatrick received a Confirmatory Order (CO) after the NRC discovered violations, the majority of which were willful, related to adherence to site radiation protection procedures. 

Fort Calhoun

This plant shut down on Oct. 24, 2016.  According to the owner, the reason was “market conditions.”  It’s hard for a plant to be economically viable when it was shut down for over two years because of scheduled maintenance, flooding, a fire and various safety violations.  The plant kept moving down the NRC Action Matrix which meant more inspections and a third-party NSC assessment.  A serious cultural issue was how the plant staff’s perception of the Corrective Action Program (CAP) had evolved to view the CAP as a work management system rather than the principal way for the plant to identify and fix its problems.  Click on the Fort Calhoun label to pull up our related posts.

Indian Point 2 and 3

Units 2 and 3 are scheduled to shut down in 2020 and 2021, respectively.  As the surrounding population grew, the political pressure to shut them down also increased.  A long history of technical and regulatory issues did not inspire confidence.  In NSC space, they had problems with making incomplete or false statements to the NRC, a cardinal sin for a regulated entity.  The plant received a Notice of Violation (NOV) in 2015 for providing information about a licensed operator's medical condition that was not complete and accurate; they received a NOV in 2014 because a chemistry manager falsified test results.  Our May 12, 2014 post on the latter event is a reader favorite. 


This plant had a long history of technical and NSC issues.  It is scheduled for shutdown on Oct. 1, 2018.  In 2015 Palisades received a NOV because it provided information to the NRC that was not complete and accurate; in 2014 it received a CO because a security manager assigned a person to a role for which he was not qualified; in 2012 it received a CO after an operator left the control room without permission and without performing a turnover to another operator.  Click on the Palisades label to pull up our related posts.


This plant is scheduled for shutdown on May 31, 2019.  It worked its way to column 4 of the Action Matrix in Sept. 2015 and is currently undergoing an IP 95003 inspection, including an in-depth evaluation of the plant’s CAP and an independent assessment of the plant’s NSC.  In 2013, Pilgrim received a NOV because it provided information to the NRC that was not complete and accurate; in 2005 it received a NOV after an on-duty supervisor was observed sleeping in the control room.

San Onofre 2 and 3

These units ceased operations on Jan. 1, 2012.  The proximate cause of death was management incompetence: management opted to replace the old steam generators (S/Gs) with a large, complex design that the vendor had never fabricated before.  The new S/Gs were unacceptable in operation when tube leakage occurred due to excessive vibrations.  NSC was never anything to write home about either: the plant was plagued for years by incidents, including willful violations, and employees claiming they feared retaliation if they reported or discussed such incidents.

Vermont Yankee

This plant shut down on Dec. 29, 2014 ostensibly for “economic reasons” but it had a vociferous group of critics calling for it to go.  The plant evidenced a significant NSC issue in 2009 when plant staff parsed an information request to the point where they made statements that were “incomplete and misleading” to state regulators about tritium leakage from plant piping.  Eleven employees, including the VP for operations, were subsequently put on leave or reprimanded.  Click on the Vermont Yankee label to pull up our related posts.

Plant with no serious or interesting NSC issues 

The following plants have not appeared on our NSC radar in the eight years we’ve been publishing Safetymatters.  We have singled out a couple of them for extremely poor management decisions.

Crystal River basically committed suicide when they tried to create a major containment penetration on their own and ended up with a delaminating containment.  It ceased operations on Sept. 26, 2009.

Kewaunee shut down on May 7, 2013 for economic reasons, viz., the plant owner apparently believed their initial 8-year PPA would be followed by equal or even higher prices in the electricity market.  The owner was wrong.

Rounding out the list, Clinton is scheduled to shut down June 1, 2017; Diablo Canyon 1 and 2 will shut down in 2024 and 2025, respectively; Oyster Creek is scheduled to shut down on June 1, 2019; and Quad Cities 1 and 2 are scheduled to shut down on June 1, 2018 — all for business reasons.

Our Perspective

Bad economics (low natural gas prices, no economies of scale for small units) were the key drivers of these shutdown decisions but NSC issues and management incompetence played important supporting roles.  NSC problems provide ammunition to zealous plant critics but, more importantly, also create questions about plant safety and viability in the minds of the larger public.

Friday, January 6, 2017

Reflections on Nuclear Safety Culture for the New Year

The start of a new year is an opportunity to take stock of the current situation in the U.S. nuclear industry and reiterate what we believe with respect to nuclear safety culture (NSC).

For us, the big news at the end of 2016 was Entergy’s announcement that Palisades will be shutting down on Oct. 1, 2018.*  Palisades has been our poster child for a couple of things: (1) Entergy’s unwillingness or inability to keep its nose clean on NSC issues and (2) the NRC’s inscrutable decision making on when the plant’s NSC was either unsatisfactory or apparently “good enough.”

We will have to find someone else to pick on but don’t worry, there’s always some new issue popping up in NSC space.  Perhaps we will go to France and focus on the current AREVA and Électricité de France imbroglio which was cogently summarized in a Power magazine editorial: “At the heart of France’s nuclear crisis are two problems.  One concerns the carbon content of critical steel parts . . . manufactured or supplied by AREVA . . . The second problem concerns forged, falsified, or incomplete quality control reports about the critical components themselves.”**  Anytime the adjectives “forged” or “falsified” appear alongside nuclear records, the NSC police will soon be on the scene.  

Why do NSC issues keep arising in the nuclear industry?  If NSC is so important, why do organizations still fail to fix known problems or create new problems for themselves?  One possible answer is that such issues are the occasional result of the natural functioning of a low-tolerance, complex socio-technical system.  In other words, performance may drift out of bounds in the normal course of events.  We may not be able to predict where such issues will arise (although the missed warning signals will be obvious in retrospect) but we cannot reasonably expect they can be permanently eliminated from the system.  In this view, an NSC can be acceptably strong but not 100% effective.

If they are intellectually honest, this is the implicit mental model that most NSC practitioners and “experts” utilize even though they continue to espouse the dogma that more engineering, management, leadership, oversight, training and sanctions can and will create an actual NSC that matches some ideal NSC.  But we’ve known for years what an ideal NSC should look like, i.e., its attributes, and how responsibilities for creating and maintaining such a culture should be spread across a nuclear organization.***  And we’re still playing Whac-A-Mole.

At Safetymatters, we have promoted a systems view of NSC, a view that we believe provides a more nuanced and realistic view of how NSC actually works.  Where does NSC live in our nuclear socio-technical system?  Well, it doesn’t “live” anywhere.  NSC is, to some degree, an emergent property of the system, i.e., it is visible because of the ongoing functioning of other system components.  But that does not mean that NSC is only an effect or consequence.  NSC is both a consequence and a cause of system behavior.  NSC is a cause through the way it affects the processes that create hard artifacts, such as management decisions or the corrective action program (CAP), softer artifacts like the leadership exhibited throughout an organization, and squishy organizational attributes like the quality of hierarchical and interpersonal trust that permeates the organization like an ether or miasma. 

Interrelationships and feedback loops tie NSC to other organizational variables.  For example, if an organization fixes its problems, its NSC will appear stronger and the perception of a strong NSC will influence other organizational dynamics.  This particular feedback loop is generally reinforcing but it’s not some superpower, as can be seen in a couple of problems nuclear organizations may face: 

Why is a CAP ineffective?  The NSC establishes the boundaries between the desirable, acceptable, tolerable and unacceptable in terms of problem recognition, analysis and resolution.  But the strongest SC cannot compensate for inadequate resources from a plant owner, a systemic bias in favor of continued production****, a myopic focus on programmatic aspects (following the rules instead of searching for a true answer) or incompetence in plant staff. 

Why are plant records falsified?  An organization’s party line usually pledges that the staff will always be truthful with customers, regulators and each other.  The local culture, including its NSC, should reinforce that view.  But fear is always trying to slip in through the cracks—fear of angering the boss, fear of missing performance targets, fear of appearing weak or incompetent, or fear of endangering a plant’s future in an environment that includes the plant’s perceived enemies.  Fear can overcome even a strong NSC.

Our Perspective

NSC is real and complicated but it is not mysterious.  Most importantly, NSC is not some red herring that keeps us from seeing the true causes of underlying organizational performance problems.  Safetymatters will continue to offer you the information and insights you need to be more successful in your efforts to understand NSC and use it as a force for better performance in your organization.

Your organization will not increase its performance in the safety dimension if it continues to apply and reprocess the same thinking that the nuclear industry has been promoting for years.  NSC is not something that can be directly managed or even influenced independent of other organizational variables.  “Leadership” alone will not fix your organization’s problems.  You may protect your career by parroting the industry’s adages but you will not move the ball down the field without exercising some critical and independent thought.

We wish you a safe and prosperous 2017.

*  “Palisades Power Purchase Agreement to End Early,” Entergy press release (Dec. 8,2016).

**  L. Buchsbaum, “France’s Nuclear Storm: Many Power Plants Down Due to Quality Concerns,” Power (Dec. 1, 2016).  Retrieved Jan. 4, 2017.

***  For example, take a look back at INSAG-4 and NUREG-1756 (which we reviewed on May 26, 2015).

****  We can call that the Nuclear Production Culture (NPC).

Monday, December 12, 2016

Canadian Draft Regulation on Nuclear Safety Culture

Draft REGDOC cover
The Canadian Nuclear Safety Commission (CNSC) has published a draft regulatory document REGDOC-2.1.2, “Safety Culture” for comment*  The REGDOC will be a requirement for nuclear power plants and provide guidance for other nuclear entities and activities.  

The REGDOC establishes “requirements and guidance for fostering and assessing safety culture.” (p. 1)  The CNSC’s purpose is to promote a healthy safety culture (SC) which they say “is a key factor in reducing the likelihood of safety-related events and mitigating their potential impact, and in continually improving safety performance.” (ibid.)

Section 2 specifies five characteristics of a healthy SC: Safety is a clearly recognized value, accountability for safety is clear, a learning organization is built around safety, safety is integrated into all activities in the organization, and a safety leadership process exists in the organization.  For each characteristic, the document lists observable indicators. 

Sections 3 and 4 describe how licensees should perform SC assessments.  Specifically, assessments should be empirical, valid, practical and functional.  Each of these three characteristics is fleshed out with relevant criteria.  The document goes on to discuss the mechanics of performing assessments: developing a communications strategy, defining the assessment framework, selecting team members, planning and conducting assessments, developing findings and recommendations, writing reports, etc.

Our Perspective

The REGDOC is clear and relatively brief.  None of the content is controversial or even new; the document is based on multiple International Atomic Energy Agency (IAEA) publications.  (14 of 15 references in the document are from IAEA.  The “Additional Information” page includes items from INPO, NEI and WANO.)

Here’s how the REGDOC addresses SC topics that are important to us:

Decision making - Satisfactory

The introduction to the SC characteristics says “The highest level of governing documentation should make safety the utmost priority – overriding the demands of production and project schedules . . .” (p. 4)  The specific SC indicators include “Timely decisions are made that reflect the value and relative priority placed on safety.
(ibid.)  “Workers are involved in risk assessment and decision-making processes.” (p. 5)  “A proactive and long-term approach to safety is demonstrated in decision making.” (p. 6)  We would have liked a more explicit treatment of safety-production-cost goal conflict but what the CNSC has included is OK.

Taking a systems view of SC - Unacceptable

This topic is only mentioned in a table of SC maturity model indicators that is in an appendix to the REGDOC.  The links between SC and other important organizational attributes must be inferred from the observable indicators.  There is no discussion of the interrelationship between SC and other important organizational attributes, e.g., the safety conscious work environment, management’s commitment to safety, or workers’ trust in management to do the right thing.

Rewards and compensation - Unacceptable 

The discussion is limited to workers.  What about senior management compensation and incentives?  How much are senior managers paid, if anything, for establishing and maintaining a healthy SC?

The discussion on performing assessments refers several times to a SC maturity model that is appended to the REGDOC.  The model has three stages of organizational maturity—requirement driven, goal driven and continually improving, along with specific observable behaviors associated with each stage.  The model can be used to “describe and interpret the organization’s safety culture, . . .” (p. 10)  Nowhere does the REGDOC explicitly state that stage 3 (a continually improving organization) is the desired configuration.  This is a glaring omission in the REGDOC.

Bottom line: If you keep up with IAEA’s SC-related publications, you don’t need to look at this draft REGDOC which adds zero value to our appreciation or understanding of SC.

*  Canadian Nuclear Safety Commission, draft regulatory document REGDOC-2.1.2, “Safety Culture” (Sept. 2016).  The CNSC is accepting public comments on the document until Jan. 31, 2017.

Wednesday, November 30, 2016

Here We Go Again: NRC to Inspect Nuclear Safety Culture at Entergy’s Pilgrim Plant

Entergy’s Pilgrim station has been in Column 4 of the Nuclear Regulatory Commission’s (NRC) Action Matrix since September 2015.  Column 4 plants receive more numerous, extensive and intrusive NRC inspections than plants that receive baseline inspections.  Pilgrim is in Column 4 primarily because its Corrective Action Program (CAP) is not effective, i.e., the CAP is not permanently fixing significant plant problems.  Pilgrim’s latest inspection follows NRC Inspection Procedure (IP) 95003.  As part of IP 95003 the NRC will assess the plant’s nuclear safety culture (NSC) to ascertain if a weak NSC is contributing to the plant’s inability or unwillingness to identify, specify, investigate and permanently fix problems.*

Our Perspective

Those are the facts.  Now let’s pull on our really tight crankypants.  Entergy is in a race with the Tennessee Valley Authority (TVA) to see which fleet operator can get into the most trouble with the NRC over NSC issues.  We reviewed Entergy’s NSC problems at its different plants in our April 13, 2016 post.  Subsequently, the NRC published its report on NSC issues at Entergy’s Arkansas Nuclear One (ANO) plant, which also was subject to an IP 95003 inspection.  We reviewed the ANO inspection report on June 16, 2016.  That’s all basically bad news.  However, there is one bit of good news: Entergy recently offloaded one of its plants, FitzPatrick, to Exelon, a proven nuclear enterprise with a good track record. 

Did we mention that Pilgrim is on the industrial equivalent of Death Row?  Entergy has announced its plan to shut down the plant on May 31, 2019.**  Local anti-nuclear activists want it shut down immediately.***  Pilgrim will certainly be under increased NRC scrutiny for the rest of its operating life.  The agency says “Should there be indications of degrading performance, we will take additional regulatory actions as needed, . . . up to and including a plant shutdown order.”****  As readers know, the Safetymatters  founders worked in the commercial nuclear industry and are generally supportive of it.  But maybe it’s time to pull the plug at Pilgrim. 

"Can't anybody here play this game?" — Casey Stengel (1890-1975)

*  “NRC to Perform Wide-Ranging Team Inspection at Pilgrim Nuclear Power Plant; Review Supports Agency’s Increased Oversight,” NRC press release No. I-16-030 (Nov.  28, 2016).  A.L. Burritt (NRC) to J. Dent (Entergy), “Pilgrim Nuclear Power Station – Notification of Inspection Procedure 95003 Phase ‘C’ Inspection” (Oct. 13, 2016).  ADAMS ML16286A592.

**  “Entergy Intends to Refuel Pilgrim in 2017; Cease Operations on May 31, 2019” (April 14, 2016).  Retrieved Nov. 29, 2016.

***  “Protesters Demand Pilgrim Nuclear Power Plant Be Shut Down Now,” (Nov. 28, 2016).  Retrieved Nov. 29, 2016.

****  “Additional NRC Oversight at Pilgrim Nuclear Power Plant,” an NRC webpage.  The quote is under the Assessment Results tab.  Retrieved Nov. 29, 2016.

Monday, November 14, 2016

NRC Identifies Nuclear Safety Culture Problems at Watts Bar. What a Surprise.

Watts Bar
A recent NRC inspection report* was very critical of both the Safety Conscious Work Environment (SCWE) and the larger Nuclear Safety Culture (NSC) at the Tennessee Valley Authority’s (TVA’s) Watts Bar plant.  This post presents highlights from the report and provides our perspective on the situation. 

The inspection was a follow-up to a Chilling Effect Letter (CEL)** the NRC issued to Watts Bar in March, 2016.  We reviewed the CEL on March 25, 2016.

The inspection team conducted focus groups and interviews with staff and management.  “. . . the inspection team identified deficiencies in the safety conscious work environment across multiple departments.  Although nearly all employees indicated that they were personally willing to raise nuclear safety concerns, many [nearly half] stated they did not feel free to raise concerns without fear of retaliation.  In addition, most employees did not believe that concerns were promptly reviewed or appropriately resolved, either by their management or via the Corrective Action Program [CAP].” (p. 5) 

While discussing management’s response to the CEL, employees were cautiously optimistic that their work environment would improve although they could not cite any specific examples of improvements.  Management putting their “spin” on the CEL and prior instances of retaliation against employees contribute to a lack of trust between employees and management. (p. 6)

In general, “. . . most employees also noted that there was a strong sense of production over safety throughout the organization. . . . Focus group participants provided examples of disrespectful behavior [by management], intimidation and shopping around work to other employees or contractors who would be less likely to raise issues. . . . all focus groups stated that they could enter issues into the CAP; however, most believed the CAP was ineffective at resolving issues.  The CAP was characterized as a problem identification, but not a problem resolution tool.” (p. 7)

Employees also expressed a lack of confidence in the plant’s Employee Concerns Program. (pp. 7-8)

Our Perspective

The chilled work environment and other NSC issues described in the inspection report did not arise out of thin air.  TVA has a long history of deficient SC at its plants.  Our March 25, 2016 post included a reference to a 2009 NRC Confirmatory Order, still in effect, covering TVA commitments to address past SCWE issues at all three of their nuclear sites.

Browns Ferry, another TVA plant, was a regular character in our 2012 series on the NRC’s de facto regulation of NSC.  As we noted on July 3, 2012 “Browns Ferry has reported SC issues including production and schedule taking priority over safety (2008), “struggling” with SC issues (2010) and a decline in SC (2011).  All of this occurred in spite of multiple licensee interventions and corrective actions.”  As part of their penance, Browns Ferry management made a presentation on their SC improvement actions at the 2014 NRC Regulatory Information Conference.  See our April 25, 2014 post for details.

For a little icing on the nuclear cake, our March 25, 2016 post also summarized the TVA Chief Nuclear Officer’s compensation plan, which doesn’t appear to include any financial incentives for establishing or maintaining a strong NSC.  .

TVA’s less-than-laser focus on safety is also reflected in their non-nuclear activities.  For example, the Dec. 22, 2008 Kingston Fossil Plant coal fly ash slurry spill was the largest such spill in U.S. history.  It was not some “act of God”; neighbors had noticed minor leaks for years and TVA confirmed there had been prior instances of seepage.***  

Bottom line: This unambiguous and complete inspection report includes multiple, significant deficiencies but it’s not new news.

Postscript:  On April 13, 2016 we asked “Is Entergy’s Nuclear Safety Culture Hurting the Company or the Industry?”  We could ask the same question about TVA.  The answer in TVA’s case is “Probably not” primarily because it is a federal corporation and thus is perceived differently from investor-owned nuclear enterprises.  For political reasons, public entities, including TVA and the Department of Energy’s nuclear facilities, are deemed too important to fail.  As a consequence, the bar for tolerable performance is lower and their shortcomings do not appear to infect the perception of private entities that conduct similar activities.

A. Blamey (NRC) to J.W. Shea (TVA), “Watts Bar Nuclear Plant - NRC Problem Identification and Resolution Inspection (Part 1); and Safety Conscious Work Environment Issues of Concern Follow-up; NRC Inspection Report 05000390/2016007 and 05000391/2016007,” (Oct. 26, 2016).  ADAMS ML16300A409.

Chilled Work Environment for Raising and Addressing Safety Concerns at the Watts Bar Nuclear Plant,” (March 23, 2016).  ADAMS ML16083A479.

Wikipedia, “Kingston Fossil Plant coal fly ash slurry spill.”  Retrieved Nov. 11, 2016.

Thursday, November 3, 2016

Nuclear Safety Culture in the Latest U.S. Report for the Convention on Nuclear Safety

NUREG-1650 cover
The Nuclear Regulatory Commission (NRC) recently published NUREG-1650, rev. 6, the seventh national report for the Convention on Nuclear Safety.*  The report is prepared for the triennial meeting of the Convention and describes the policies, laws, practices and other activities utilized by the U.S. to meet its international obligations and ensure the safety of its commercial nuclear power plants.  Nuclear Safety Culture (NSC) is one of the topics discussed in the report.  This post highlights NSC changes (new items and updates) from the sixth report (NUREG-1650, rev. 5) which we reviewed on March 26, 2014.  The numbers shown below are section numbers in the current report.

8.1.5  International Responsibilities and Activities 

The NRC’s International Regulatory Development Partnership (IRDP) program supports the safe introduction of nuclear power in “new entrant” countries.  IRDP training addresses many topics including safety culture. (p. 99)  Human Resources 

This section was updated to include a reference to the 2015 NRC Safety Culture and Climate Survey.

10.1  Background [for article 10, “Priority to Safety”] 

The report notes “All U.S. nuclear power plants have committed to conducting a safety culture self-assessment every 2 years and have committed to conducting monitoring panels as described in Nuclear Energy Institute (NEI) 09-07, “Fostering a Healthy Nuclear Safety Culture,” dated March 2014.” (p. 120)  We reviewed NEI 09-07 on Jan. 6, 2011.

10.4  Safety Culture

The bulk of the report addressing NSC is in this section and exhibits a significant rewrite from the previous report.  Some of the changes reorganized existing material but there are also new items, discussed below, and additional background information.  Overall, section 10.4 is more complete and lucid than its predecessor.

10.4.1  Safety Culture Policy Statement

This contains material that formerly appeared under 10.4 and has been expanded to include two new safety culture traits, “questioning attitude” and “decisionmaking.”  The NRC worked with licensees and other stakeholders to develop a common language for discussing and assessing NSC; this effort resulted in NUREG-2165, “Safety Culture Common Language.”  We reviewed NUREG-2165 on April 6, 2014.

10.4.2  NRC Monitoring of Licensee Safety Culture 

This section has been edited to improve clarity and completeness, and provide more specific references to applicable procedures.  For example, IP 95003 now includes detailed guidance for NRC inspectors who conduct an independent assessment of licensee NSC.**

New language specifies interventions the NRC may take with respect to licensee NSC: “These activities range from requesting the licensee perform a safety culture self-assessment to a meeting between senior NRC managers and a licensee’s Board of Directors to discuss licensee performance issues and actions to address persistent and continuing safety culture cross-cutting issues.” (p. 128)

10.4.3 The NRC Safety Culture

This section covers the NRC’s efforts to maintain and enhance its own SC.  The section has been rewritten and strengthened throughout.  It discusses the need for continuous improvement and says “Complacency lends itself to a degradation in safety culture when new information and historical lessons are not processed and used to enhance the NRC and its regulatory products.” (p. 130)  That’s true; SC that is not actively maintained will invariably decay.

12.3.5  Human Factors Information System 

This system handles human performance information extracted from NRC inspection and licensee event reports.  The report notes “the database is being updated to include data with a safety culture perspective.” (p. 146)

Institute of Nuclear Power Operations (INPO)

INPO also provides content for the report, basically a description of INPO’s activities to ensure plant safety.  Their discussion includes a section on SC, which is not materially different from their contribution to the previous version of the report.

Our Perspective

Like the sixth national report, this seventh report appears to cover every aspect of the NRC’s operations but does not present any new information.  In other words, it’s a good reference document.

The NSC changes are incremental but move toward increased bureaucratization and intrusive oversight of NSC.  The NRC is certainly showing the hilt of the sword of regulation if not the blade.  We still believe if it reads like a set of requirements, results in enforceable interventions and quacks like the NRC, it’s de facto regulation.

*  NRC NUREG-1650 Rev. 6, “The United States of America Seventh National Report for the Convention on Nuclear Safety” (Oct. 2016).  ADAMS ML16293A104.  The Convention on Nuclear Safety is a legally binding commitment to maintain a level of safety that meets international benchmarks.

**  This detailed guidance is also mentioned in 12.3.6 Support to Event Investigations and For-Cause Inspections and Training (p. 148).

Thursday, October 20, 2016

Korean Perspective on Nuclear Safety Culture

Republic of Korea flag
We recently read two journal articles that present the Korean perspective on nuclear safety culture (NSC), one from a nuclear research institute and the other from the Korean nuclear regulator.  Selected highlights from each article are presented below, followed by our perspective on the articles’ value.

Warning:  Although the articles are in English, they were obviously translated from Korean, probably by a computer, and the translation is uneven.  However, the topics and references (including IAEA, NRC, J. Reason and Schein) will be familiar to you so with a little effort you can usually figure out what the authors are saying.

Korean NSC Situation and Issues*

The author is with the Korea Atomic Energy Research Institute.  He begins by describing a challenge facing the nuclear industry: avoiding complacency (because plant performance has been good) when the actual diffusion of NSC attributes among management and workers is unknown and major incidents, e.g., Fukushima, point to deficient NSC has a major contributor.  One consequence of this situation is that increased regulatory intervention in licensee NSC is a clear trend. (pp. 249, 254)

However, different countries have differing positions on how to intervene in or support NSC because (1) the objectification of an essentially qualitative factor is necessarily limited and (2) they fear diluting the licensee’s NSC responsibilities and/or causing unintended consequences. 

The U.S. NRC’s NSC history is summarized, including how NSC is addressed in the Reactor Oversight Process and relevant supplemental inspection procedures.  The author’s perception is “If safety culture vulnerability is judged to seriously affect the safety of a nuclear power plant, NRC orders the suspension of its operation, based on the judgment.” (p. 254)  In addition, the NRC has “developed and has been applying a licensee safety culture oversight program, based on site-stationed inspector's observation and assessment . . .” (ibid.)

The perception that the NRC would shut down a plant over NSC issues is a bit of a stretch.  While the agency is happy to pile on over NSC shortcomings when a plant has technical problems (see our June 16, 2016 post on ANO) it has also wrapped itself in knots to rationalize the acceptability of plant NSC in other cases (see our Jan. 30, 2013 post on Palisades).   

There is a passable discussion of the methods available for assessing NSC, ranging from observing top management leadership behavior to taking advantage of “Big data” approaches.  However, the author cautions against reliance on numeric indicators; they can have undesirable consequences.  He observes that Europe has a minimal number of NSC regulations while the U.S. has none.  He closes with recommendations for the Korean nuclear industry.

Regulatory Oversight of NSC**

The authors are with the Korea Institute of Nuclear Safety, the nuclear regulatory agency.  The article covers their philosophy and methods for regulating NSC.  It begins with a list of challenges associated with NSC regulatory oversight and a brief review of international efforts to date.  Regulatory approaches include monitoring onsite vulnerabilities (U.S.), performing standard reviews of licensee NSC evaluations (Canada, Korea) and using NSC indicators (Germany, Finland) although the authors note such indicators do not directly measure NSC. (pp. 267-68)

In the Korean view, the regulator should perform independent oversight but not directly intervene in licensee activities.  NSC assessment is separate and different from compliance-based inspection, requires effective two-way communications (i.e., a common language) and aims at creating long-term continuous improvement. (pp. 266-67)  Their NSC model uses a value-neutral definition of NSC (as opposed to strong vs. weak); incorporates Schein’s three levels; includes individuals, the organization and leaders; and emphasizes the characteristics shared by organization members.  It includes elements from IAEA GSR Part 2, the NRC, J. Reason's reporting culture, DOE, INPO, just culture and Korea-specific concerns about economics trumping safety. (pp. 268-69)***

In the detailed description of the model, we were pleased to see “Incentives, sanctions, and rewards correspond to safety competency of individuals.”  (p. 270)  An organization’s reward system has always been a hot-button issue for us; all nuclear organizations claim to value NSC, few are willing to pay for achieving or maintaining it.  Click the “Compensation” label to see all our posts on this topic.

The article presents a summary of an exercise to validate the model, i.e., link model components to actual plant safety performance.  The usual high-level mumbo-jumbo is not helped by the rough spots in the translation.  Inspection results, outage rates, scrams, incidents, unplanned shutdowns and radiation doses were claimed to be appropriately correlated with NSC model components.

There should be no surprise that the model was validated.  Getting a “right” answer is obviously good for the regulator.  We routinely express some skepticism over studies that validate models when we can’t see the actual data and we don’t know if the analysis was independently reviewed by anyone who actually understands or cares about the subject matter.

During the pilot study, several improvement areas in Korean NPP's safety culture were identified.  The approach has not been permanently installed.

Our Perspective

These articles are worth reading just to get a different, i.e., non-U.S., perspective on regulatory evaluation of (and possible intervention in) licensee SC.  It’s also worthwhile to get a non-U.S. perspective on what they think is going on in U.S. nuclear regulatory space.  Their information sources probably include a June 2015 NRC presentation to Korean regulators referenced in our Aug. 24, 2015 post.  

It’s interesting that Europe has some regulations that focus on ongoing communications with the licensees.  In contrast, the U.S. has no regulations but an approach that can stretch like a cheap blanket to cover all possible licensee situations.


We haven’t posted for awhile.  It’s not because we’ve lost interest but there hasn’t been much worth reporting.  The big nuclear news in the U.S. is not about NSC, rather it’s about plants being scheduled for shutdown because of their economics.  International information sources have not been offering up much either.  For example, the LinkedIn NSC forum has pretty much dried up except for recycled observations and consultants’ self-serving white papers.

*  Y-H Lee, “Current Status and Issues of Nuclear Safety Culture,” Journal of the Ergonomics Society of Korea vol. 35 no. 4 (Aug 2016) 247-261.

**  YS Choi, SJ Jung and YH Chung, “Regulatory Oversight of Nuclear Safety Culture and the Validation Study on the Oversight Model Components,” Journal of the Ergonomics Society of Korea vol. 35 no. 4 (Aug 2016) 263-275.

***  Korea has had problems, mentioned in both articles, caused by deficient NSC.  Also see our Aug. 7, 2013 post for related information.