Showing posts with label EU. Show all posts
Showing posts with label EU. Show all posts

Monday, October 13, 2014

Systems Thinking in Air Traffic Management


A recent white paper* presents ten principles to consider when thinking about a complex socio-technical system, specifically European Air Traffic Management (ATM).  We review the principles below, highlighting aspects that might provide some insights for nuclear power plant operations and safety culture (SC).

Before we start, we should note that ATM is truly a complex** system.  Decisions involving safety and efficiency occur on a continuous basis.  There is always some difference between work-as-imagined and work-as-done.

In contrast, we have argued that a nuclear plant is a complicated system but it has some elements of complexity.  To the extent complexity exists, treating nuclear like a complicated machine via “analysing components using reductionist methods; identifying ‘root causes’ of problems or events; thinking in a linear and short-term way; . . . [or] making changes at the component level” is inadequate. (p. 5)  In other words, systemic factors may contribute to observed performance variability and frustrate efforts to achieve the goal in nuclear of eliminating all differences between work-as-planned and work-as-done.

Principles 1-3 relate to the view of people within systems – our view from the outside and their view from the inside.

1. Field Expert Involvement
“To understand work-as-done and improve how things really work, involve those who do the work.” (p. 8)
2. Local Rationality
“People do things that make sense to them given their goals, understanding of the situation and focus of attention at that time.” (p. 10)
3. Just Culture
“Adopt a mindset of openness, trust and fairness. Understand actions in context, and adopt systems language that is non-judgmental and non-blaming.” (p. 12)

Nuclear is pretty good at getting line personnel involved.  Adages such as “Operations owns the plant” are useful to the extent they are true.  Cross-functional teams can include operators or maintenance personnel.  An effective CAP that allows workers to identify and report problems with equipment, procedures, etc. is good; an evaluation and resolution process that involves members from the same class of workers is even better.  Having someone involved in an incident or near-miss go around to the tailgates and classes to share the lessons learned can be convincing.

But when something unexpected or bad happens, nuclear tends to spend too much time looking for the malfunctioning component (usually human).   “The assumption is that if the person would try harder, pay closer attention, do exactly what was prescribed, then things would go well. . . . [But a] focus on components becomes less effective with increasing system complexity and interactivity.” (p. 4)  An outside-in approach ignores the context in which the human performed, the information and time available, the competition for focus of attention, the physical conditions of the work, fatigue, etc.  Instead of insight into system nuances, the result is often limited to more training, supervision or discipline.

The notion of a “just culture” comes from James Reason.  It’s a culture where employees are not punished for their actions, omissions or decisions that are commensurate with their experience and training, but where gross negligence, willful violations and destructive acts are not tolerated.

Principles 4 and 5 relate to the system conditions and context that affect work.

4. Demand and Pressure
“Demands and pressures relating to efficiency and capacity have a fundamental effect on performance.” (p. 14)
5. Resources & Constraints

“Success depends on adequate resources and appropriate constraints.” (p. 16)

Fluctuating demand creates far more varied and unpredictable problems for ATM than it does in nuclear.  However, in nuclear the potential for goal conflicts between production, cost and safety is always present.  The problem arises from acting as if these conflicts don’t exist.

ATM has to “cope with variable demand and variable resources,” a situation that is also different from nuclear with its base load plants and established resource budgets.  The authors opine that for ATM, “a rigid regulatory environment destroys the capacity to adapt constantly to the environment.” (p. 2) Most of us think of nuclear as quite constrained by procedures, rules, policies, regulations, etc., but an important lesson from Fukushima was that under unforeseen conditions, the organization must be able to adapt according to local, knowledge-based decisions  Even the NRC recognizes that “flexibility may be necessary when responding to off-normal conditions.”***

Principles 6 through 10 concern the nature of system behavior, with 9 and 10 more concerned with system outcomes.  These do not have specific implications for SC other than keeping an open mind and being alert to systemic issues, e.g., complacency, drift or emergent behavior.

6. Interactions and Flows
“Understand system performance in the context of the flows of activities and functions, as well as the interactions that comprise these flows.” (p. 18)
7. Trade-Offs
“People have to apply trade-offs in order to resolve goal conflicts and to cope with the complexity of the system and the uncertainty of the environment.” (p. 20)
8. Performance variability
“Understand the variability of system conditions and behaviour.  Identify wanted and unwanted variability in light of the system’s need and tolerance for variability.” (p. 22)
9. Emergence
“System behaviour in complex systems is often emergent; it cannot be reduced to the behaviour of components and is often not as expected.” (p. 24)
10. Equivalence
“Success and failure come from the same source – ordinary work.” (p. 26)

Work flow certainly varies in ATM but is relatively well-understood in nuclear.  There’s really not much more to say on that topic.

Trade-offs occur in decision making in any context where more than one goal exists.  One useful mental model for conceptualizing trade-offs is Hollnagel’s efficiency-thoroughness construct, basically doing things quickly (to meet the production and cost goals) vs. doing things well (to meet the quality and possibly safety goals).  We reviewed his work on Jan. 3, 2013.

Performance variability occurs in all systems, including nuclear, but the outcomes are usually successful because a system has a certain range of tolerance and a certain capacity for resilience.  Performance drift happens slowly, and can be difficult to identify from the inside.  Dekker’s work speaks to this and we reviewed it on Dec. 5, 2012.

Nuclear is not fully complex but surprises do happen, some of them not caused by component failure.  Emergence (problems that arise from new or unforeseen system interactions) is more likely to occur following the implementation of new technical systems.  We discussed this possibility in a July 6, 2013 post on a book by Woods, Dekker et al.

Equivalence means that work that results in both good and bad outcomes starts out the same way, with people (saboteurs excepted) trying to be successful.  When bad things happen, we should cast a wide net in looking for different factors, including systemic ones, that aligned (like Swiss cheese slices) in the subject case.

The white paper also includes several real and hypothetical case studies illustrating the application of the principles to understanding safety performance challenges 

Our Perspective 

The authors draw on a familiar cast of characters, including Dekker, Hollnagel, Leveson and Reason.  We have posted about all these folks, just click on their label in the right hand column.

The principles are intended to help us form a more insightful mental model of a system under consideration, one that includes non-linear cause and effect relationships, and the possibility of emergent behavior.  The white paper is not a “must read” but may stimulate useful thinking about the nature of the nuclear operating organization.


*  European Organisation for the Safety of Air Navigation(EUROCONTROL), “Systems Thinking for Safety: Ten Principles” (Aug. 2014).  Thanks to Bill Mullins for bringing this white paper to our attention.

**  “[C]omplex systems involve large numbers of interacting elements and are typically highly dynamic and constantly changing with changes in conditions. Their cause-effect relations are non-linear; small changes can produce disproportionately large effects. Effects usually have multiple causes, though causes may not be traceable and are socially constructed.” (pp. 4-5)

Also see our Oct. 14, 2013 discussion of the California Independent System Operator for another example of a complex system.

***  “Work Processes,” NRC Safety Culture Trait Talk, no. 2 (July 2014), p. 1.  ADAMS ML14203A391.  Retrieved Oct. 8, 2014

Tuesday, July 22, 2014

The European Union Shows Stronger Interest in Nuclear Safety Culture

Council of the EU building
The Council of the European Union (EU) recently updated its 2009 Nuclear Safety Directive.  The revised directive’s objectives include strengthening national regulatory authorities, increasing public transparency on nuclear safety matters and promoting an effective nuclear safety culture.  The last objective caught our eye and is the subject of this post.

Safety Culture in the 2009 Nuclear Safety Directive*

Safety culture (SC) did not get a lot of attention in the 2009 directive.  Specifically, “The establishment of a strong safety culture within a nuclear installation is one of the fundamental safety management principles necessary for achieving its safe operation.” (p. L 172/19)  That was it.

Safety Culture in the 2014 Amended Directive**

SC treatment in this version is more expansive.

“Indicators for an effective nuclear safety culture include, in particular: the commitment at all levels of staff and management within an organisation to nuclear safety and its continuous improvement; the promotion of the ability of staff at all levels to question the delivery of relevant safety principles and practices to continuously improve nuclear safety; the ability of staff to report safety issues in a timely manner; the identification of the lessons learnt from operational experience; and the systematic reporting of any deviation from normal operating conditions or arrangements relevant to accident management that have the potential to have an impact on nuclear safety.” (p. 10)

The foregoing is then restated in the form of requirements.  “Member States shall ensure that the national framework requires that the competent regulatory authority and the licence holder take measures to promote and enhance an effective nuclear safety culture. Those measures include in particular:

(a) management systems which give due priority to nuclear safety and promote, at all levels of staff and management, the ability to question the effective delivery of relevant safety principles and practices, and to report in a timely manner on safety issues, in accordance with Article 6(d);

(b) arrangements by the licence holder to register, evaluate and document internal and external safety significant operating experience;

(c) the obligation of the licence holder to report events with a potential impact on nuclear safety to the competent regulatory authority; and,

(d) arrangements for education and training, in accordance with Article 7.” (p. 28)

Our Perspective

We are pleased to see the EU strengthen its position on SC’s role in promoting and maintaining safe nuclear operations.  The 2014 version of the safety directive is obviously a major improvement over 2009.  The paragraph on management systems gives “due priority” to safety and reflects the notions of a Safety Conscious Work Environment and an Employee Concerns Program.

The other requirements on recording operating experience, reporting significant events and arranging training create a minimally acceptable framework for nuclear operations.

We recognize that this EU directive is a top-level policy document so we don’t expect any specifics but there are two other SC-related items that merit mention at the policy level.

One, the management system should have a top-level goal of identifying and correcting problems in a timely manner.  This is perhaps the most important artifact of a strong SC.  Such a goal should not be limited to issues like equipment problems but cover everything from plant siting to daily operations.

Two, the management system should include reference to an executive compensation scheme that rewards safety performance and the maintenance of a strong SC.


*  “Council Directive 2009/71/EURATOM of 25 June 2009 establishing a Community framework for the nuclear safety of nuclear installations,” Official Journal of the European Union (July 2, 2009).

**  Council of the European Union, “Council Directive amending Directive 2009/71/Euratom establishing a Community framework for the nuclear safety of nuclear installations,” Interinstitutional File: 2013/0340 (June 30, 2014)